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1. INTRODUCTION

Given a finite union I of fixed closed curves in R, there
is an associated problem of finding a surface of least area
which has I” as its boundary. This is equivalent to finding a
surface of constant mean curvature zero having I as its
boundary. In this paper, a new approach to numerically
solving this problem is introduced. The surface is repre-
sented as a level set of a global function @: R*> R. A
given initial surface evolves according to mean curvature
fiow until a steady state solution is achieved. A new system
of interpolatory boundary conditions are used to maintain
the connection between the moving surface and the fixed
boundary contour.

Mimimal surfaces arise naturally in many physical
models, the most familiar being soap fiims fitting to a wire
boundary. In this context, a soap film is modeled as two
adjacent thin films acted upon by surface tension. The film
is assumed to have negligible mass and constant pressure on
both sides. A relationship between the shape of the surface
and the pressure is obtained from Laplace’s equation

0=p=Tx,

where p is the pressure difference across the film, T is the
surface tension of the film, and « is the mean curvature;
thus, surfaces of constant mean curvature zero provide a
close approximation to soap film shapes.

Minimal surfaces also appear in the study of flexible and
inextensible films [13], biology [5], translation nets [8],
relativity theory [17-19], quantum string theory [16],
medical technology [23], and architecture {107].

In general, the solution to the minimal surface problem is
not unique. For a given boundary I, there may be several
distinct surfaces with constant mean curvature zero.
A surface is locally minimal with respect to I” if any small
perturbation of the surface increases the total surface area.
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FIG. 1. A two ring boundary arrangemetit.

A surface is globally minimal if it has the least area of any
surface which has I for its boundary. If a surface is locally
minimal, then that surface has mean curvature zero (see
Nitsche [14]). The converse is not necessarily true, since
non-lfocally minimal surfaces with mean curvature zero
exist. Such surfaces are called unstable. Nonetheless, the
accepted definition of minimal surface includes all surfaces
with mean curvature zero.

An example of a boundary having multiple minimal sur-
faces is given by two concentric rings as in Fig, 1. With rings
close enough together in relation to the ring radii, three
topologically different solutions exist. One solution consists
of two flat disks (Fig. 2); a second, called the catenoid, is
topologically equivalent to a cylinder (Fig. 3), and the third
is similar t0 a catenoid with a disk sewn into the center
{Fig. 4).

Orne might think that a catenoid solution exists for any
pair of rings regardless of the separation distance. However,
this is not the case. Only the two-disk solution exists when

FIG. 2. Two disks.
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F1G. 3. Eulers catenoid.

the rings are greater than a threshold distance apart. Thus,
the topology of a potential solution does not depend solely
on the boundary. This is an important point which affects
the way minimal surfaces are computed. Obviously, this
restricts the versatility of a minimal surfaces algorithm.

There are a number of existing numerical methods for
solving Plateau’s problem. One class of methods, including
those of Concus [3], Hoppe [12], Elcrat and Lancaster
[671, and Greenspan [9], represent the surface in non-
parametric form. These methods are restricted to surfaces
with a functional representation of the form z=f(x, y).
A second class of methods, including those of Brakke
[1], Wagner [22], Hinata er a/ [11], and Coppin and
Greenspan [4], use a network of connected marker par-
ticles to represent parametric surfaces. It is not trivial to
know how and when to restructure the connections to
simulate a change in topology. In summary, each of these
methods are either incapable or require ad hoc intervention
by the user to change topology during computing. However,
as discussed above, the topology of a sclution may not
always be predicted. Without the ability to change topol-
ogy, spurious solutions can result (see [22]). We note that
unstabie minimal surfaces are difficult to compute, since
perturbations due to inexact computer approximations
cause a minimum seeking algorithm to flow away from
unstable minimums towards a nearby stable minimum,.

In this paper, we introduce a new minimal surface solver
which is capable of making topology changes naturally.

FIG. 4. Catenotd with disk.

2. LEVEL SET CURVATURE MOTION

In a paper by Osher and Sethian [15], a technique for
following interfaces propagating with curvature dependent
speed was introduced which allows topological changes.
This section is a summary of the relevant portions of that
paper.

To begin, consider a smooth two-dimensional surface S
in R For mean curvature flow, at each point x of S, the
velocity of x is in the direction normal to S with magnitude
equal to the local mean curvature of S at x. The case of a
one-dimensional surface in the plane along with the velocity
vectors of the surface is depicted in Fig. 3. More precisely,
let S, be an initial smooth surface and x(0)=x,e S;. Then
the equation of motion for the point x(r) is given by

d
?f (1) -1 = K(x(r))
(1)

x(0)= xo,

where 7 is the unit normal to S at the point x and x(x) is the
mean curvature of § at x. Recall that mean curvature is the
average of the two principle curvatures, the sign of which
depends on the chosen normal to S. However, changing the
sign of the normal vector only changes the sign of the
curvature. Therefore, for this equation of motion it is not
necessary to specify which normal is used.

This Lagrangian type formulation is well suited to the
marker particle type of method. But in [20], Sethian noted
that while this formulation for the curvature flow model is
relatively easy to implement, it can lead to computational
difficulties. He shows that instabilities can result if marker
particles get too close together.

A different approach introduced by Osher and Sethian is
to model curvature flow in an Eulerian coordinate system.
To begin, the surface is represented as a level set of some
function @: R® - R. An equation of motion for @ equivaient
to the Lagrangian formulation may be found by treating
every level set @ ~!(C) as a separate curvature flow problem.
This leads to an equation of motion for @ over the entire
domain. For the details, see Osher and Sethian [157 and
Sethian [20].

FIG. 5. One-dimensicnal curvature flow velocity field, -
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Consider an arbitrary level set {xe R:®(x,t)=C}.
Implicit differentiation with respect to ¢ in this equation
gives

Var(x, 1). 2

E(t)+f15,(x, 1)=0.

(2)

Note that —V@/|V@| is a unit normal to the level set
@ ~'(C), so by combining Eqs. (1) and (2),

—V& dx dx
@, =|VD| Nz ()=Ve| n— (1)
=x(x(1)) V2| (3)

The mean curvature x{x(¢)) can be represented solely as a
function of @ and its derivatives by

(prx(@ﬁ + PN+ P P+ P+ PP+ ‘Di))
- 2d)xy ¢x t:Dy - 2¢yz be@z . 2(sz¢x(p:
AP+ oI+ @7)7

K=

(4)

Therefore, the equation of motion for the surface @ ~'(C)
has been changed into a quasi-linear second-order
parabolic partial differential equation which is independent
of the level set value C.

An interesting example of a topological change using this
method was computed by Sethian [21]. He considered an
initial shape of a dumbbell, two large spheres connected by
a cylinder. As predicted, the shrinking of the spheres is
slower than the shrinking of the cylinder, so the dumbbell
eventually breaks in the center. The picture of a slice of the
object as it shrinks is depicted in Fig. 6. To see how this
relates to the level curves of @, Fig. 7 shows the various
stages of the surface @ ~'(0) and the corresponding graph of
®(x, y, 0, 7). Note how the topology changes when the level
set &~ '(0) contains the center critical point of &, where
V& = 0. In his computation it should be noted that Sethian

FIG. 6. Motion of a dumbbell under mean curvature.
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FIG. 7. Breaking dumbbell vs, w=®(x, », 0, {}.
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used a staggered grid around the center point where V& =0
to avoid the zero denominator in Eq, (4).

Thus, this new level set approach to curvature flow
problems provides a way to change topology naturally
without the need for ad hoc decisions. This property can be
exploited to create a new minimal surface algorithm.

Osher and Sethian in [15,20] developed a numerical
method based upon this Fulerian formulation. In those
papers a more general curvature-dependent speed function
was considered. For the case of speed equal to mean
curvature (see [15]), any type of time derivative method,
for example, Euler’s method, Runge-Kutta’s method, or
an implicit method, can be employed. For the space
derivatives, central differences are used to approximate the
curvature terms. Thus, for Euler's method, the numerical
scheme for modelling curvature flow reduces to

PrE = DT, + At x K(D"),

where K(@") is a finite difference approximation to the
curvature from Eq.{4). In this case, central differences
for all derivatives of ¢ in the interior of the domain. At the
boundary of the domain one-sided finite differences are
used.

In order to construct @(x, 0) for a given initial surface S,
the signed distance function from the initial surface is used.
For the signed distance, the magnitude of @ is given by
[d(x, 0)} = dist(x, §). Given an orientation for the normal n
of S, the sign of @ is determined by the requirement that
ddjdn|c=1. As noted above, for mean curvature flow it
does not matter which side of the surface has positive values
of &,

3. COMPUTATION OF MINIMAL SURFACES

In this section we develop a new minimal surface algo-
rithm using the level set curvature flow model discussed
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above. The basic idea is to compute minimal surfaces by
attaching a surface to a given boundary and letting it move
according to its mean curvature,

Since we are primarily concerned with making the
numerator of the curvature formula tend to zero, the
minimal surface algorithm presented here leaves out the
denominator for the curvature flow. This is permissible
because the denominator is only a scaling factor for the
distance betwecen level sets. The reinitialization process
described below ensures that this scaling factor remains
uniform everywhere on the surface except at points where
V& =0. When V@ =0, the numerator of the curvature is
also zero, so reguiarizing the curvature formula results in
the same flow as when just the numerator of curvature is
used. Unless otherwise noted, curvature flow in this section
refers to the curvature formula without the denominator.

3.1. The Basic Algorithm

If the level set approach is applied to the minimal surface
problem with boundary, there is ne reason to expect the
surface to remain attached to the boundary. We must
anchor the surface on the boundary. Thus, a first attempt at
a minimal surface algorithm based on curvature flow might
look like this:

ALGORITHM 1.

Step 1. Move surface according to curvature flow.
Step 2. Reattach surface to boundary.
Step 3. Go tostep 1.

The algorithm will use the level set formulation of
curvature flow to follow the surface @®~'{0). In this
formulation, the boundary contour divides & ~'(0) into two
disjoint pieces, ® ~10)=Tu E, where E is defined to be the
exterior set and the compact interior set defined by [ also
contains the boundary.

Consider a boundary contour {” consisting of a ring of
radius R in the xy-plane. One might take the initial guess of
a solution as a hemisphere .S of radius R attached to the
ring. To realize S as a level set of some function &, the sur-
face § must be continued out to the edges of the domain
of @, One way to continue the surface is to let E be the
xy-plane minus the disk bounded by I, so that $~1(0)
would appear as in Fig. 8. Now & can be constructed by

/

FIG. 8 & Y{0)=Eul
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choosing the sign of @ to be, say, negative below the surface
and positive above, Clearly, the portion of the surface that
18 of interest is the set 1. The set E is only needed to
construct @.

The process of reattaching the surface to the boundary in
this numerical method follows from the idea that @ must
only be altered locally at the boundary so that @ =0 at the
boundary. Doing this involves answering two questions.
First, how does one model a one-dimensional contour on a
three-dimensional rectangular grid? Second, how can @ be
altered locally so that @ =0 at the boundary?

In general, the boundary conditions will be represented as
a vector equation of the form vg,, « Av;,y, where

D(g41) P(gi)
| P(ga2) | Plgi2)
Udep_ : > ind = : H

Vcb(gu',m) (p(gi,n)

£a;+ & ; are distinct grid points, and A is an m x n matrix.
The vector v;,4 i the independent vecror and consists of the
values of & at all the independent grid points g, ;. The value
of @ at independent grid points is entirely determined by
curvature flow. The vector vy, is the dependent vector and
consists of the values of @ at all the dependent grid points
g4 ;- At dependent grid points, the value of ®(g, ;} is deter-
mined entirely by Av,,4. Since the matrix 4 only depends on
the fixed boundary [, the coefficients of 4 are constant for
all time. Let the entries of the matrix 4 be called the
dependency coefficients. The computation of the dependency
coefficients can be broken down into a linear combination
of smaller matrix blocks of size 1 x1 and 2 x 2.

For the remainder of this section let I'={y(s}e
R*:5e[0, P}, where y(s) is continuous with y(0) = y(P),
be a single boundary contour.

As p(s) traverses through the grid, there are three ways it
can interact with the grid. Define a zero-peint to be a grid
point g such that g e I". Define an edge to be a line segment
L connecting two adjacent grid points such that L n 75 (7.
Define a pane to be a rectangular region R bounded by
four connecting coplanar edges such that RnI'# . An
example of each is depicted in Fig. 9.

zero point edge pane

FIG. 9. Interaction between a curve and a grid.



COMPUTING MINIMAL SURFACES 81

FIG. 10. Dependency calculation of an edge.

The boundary I is discretized into a piecewise linear path
with vertices consisting of all the intersections of I with
zero-points, edges, and panes in the grid. Keeping I fixed
then means fixing those vertices with respect to the grid. The
boundary conditions needed for fixing the vertices require
that independent and dependent grid points are designated
and that the resulting dependency coefficients are
calculated.

For a zero-point g, the point itself is defined to be depend-
ent with no dependency coefficient. Since g is always on the
boundary and @ =0 on the boundary, then &(g) « 0.

For an edge, one end point must be designated inde-
pendent, the other dependent. In general, the point closer
to the interior set [ is chosen as independent. In this case,
P{g )+ CP(g,), where C <0 is a constant for all time. To
calculate C, suppose the intersection point of 1" and the edge
is given by ag,+ (1 —«) g, with 2 2 (0, 1). Linear interpola-
tion implies that C={o— 1)/o

For a pane, two adjacent points must be chosen to be
independent, the other two are then dependent. Again, the
two points sharing a common edge nearest to the set [ are
chosen as independent. In this case the two points will
straddle the intersection of f with the pane. The dependency
relation is then a 2 x 2 matrix equation. Let the intersection
point be given by (1 —a—f)g;, +ag;,+ fig.,. Then the

dependency relation is given by
[¢(gd,1)]<_l[d+ﬁ—1 —a }[ﬂb(g.-,l)} (s)
D(ga42) B a—1 p—all Plg.2) |

e,

i,

ot

i,2

FIG. 11. Dependency calculation of a pane.

FIG. 12. A sample chain,

Unfortunately, the choices made for edges and panes are
not isolated (see Figs. 10 and 11). There may be grid points
which belong to more than one pane or edge. Define a link
to be either a pane or an edge. Define a chain to be an
ordered list of links with any two consecutive links sharing
at least one common grid point. A simple example of a chain
is depicted in Fig. 12. As a point y(s) traverses the grid, a
string of connected panes and edges are intersected.

In general, the complete boundary conditions for I” are
not one large chain, but instead are made up of any number
of disjoint chains. These chains can be separated in any
number of ways; for example, /" may intersect oppaosite
facing panes, a pane opposite a paraliel edge, two opposite
edges, etc. Some chain separators are shown in Fig. 13.

Define a chain to be consistent if every grid point con-
tained in the chain s labelled either independent or depend-
ent, but not both. The goal of choosing independent and
dependent points is to construct consistent chains, In the
chain shown in Fig. 12 there are exactly the four consistent
labellings shown in Fig. 14,

Unfortunately, there exist chains which do not permit any
consistent labellings. Such chains may arise when the grid is
too coarse to adequately model a given boundary. To get
around this problem, moving the boundary with respect to
the grid by some small amount ¢ may help. If nudging the
boundary does not help, then only refining the mesh will
eliminate such chains.

Note that the intersection points between /™ and the edges
and panes of the grid are strictly local events; i.c., the loca-
tion of the intersection of I” and pane one in Fig. 12 should
have no influence over the location of the intersection of I'
in pane four. However, an inconsistent chain can lead to
dependencies stretching all along the length of a chain,

The structure of the chains also affects the calculation of
the dependency coeflicients, The number of dependent and

1
1
1
1
1
¥
\l

FIG. 13. Example chain separators.
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FIG. 14. Four consistent labellings.

independent points within a chain may not be the same, so
the boundary conditions may be an overdetermined system
of equations. For example, consider the labelled two pane
chain in Fig. 15. The dependency relations for such a system

are given by
[‘D(gd.l)}‘_A {:@(gm)]
1 H
P(ga2) D{g;2)
|:®(gd,l):|‘_A l:‘p(gi,a)J
P(g42) : P(g:4)
The values @(g,,) and P(g, ;) are overdetermined. One

option for solving the overdetermined system is to average
the values &(g, ) and &(g,,); thus

[¢(gd_l)j] - l (A1 [(p(gr,l):l + A, [cb(gi,f’)]).
P(g4>) 2 P(g;2) P(g;4)

Note that if the surface is a piane, then the averaging
solution is correct. As the mesh is refined the surface
locally becomes more like a plane. Therefore, as the mesh is
refined, the error in this averaging process decreases.

The construction of the numerical boundary conditions is
not strictly unique, but there is an optimal set of boundary
conditions given an interior set I. As described above, the

optimal boundary conditions are those for which the
dependent points are furthest from 7. If given boundary

FIG. 15, Overdetermined labelling.

curve [, non-optimal boundary conditions is equivalent to
solving the minimal surface problem for a perturbed bound-
ary curve { . The amount of the perturbation is no greater
than the mesh size of the grid. In practice, this has always
resulted in a perturbed solution I’ which is close enough to
the desired solution to be able to compute the optimal
boundary conditions. Thus, finding the numerical boundary
conditions for a given boundary curve 7" is a two-step
process. First, an initial guess at the correct boundary
conditions is made and the surface with those boundary
conditions is generated. The second step of the boundary
generation process is to readjust the boundary using the
computed surface as an approximation to a solution. Once
the boundary is properly adjusted, a better solution can
be computed with the new boundary using the previously
computed surface as the new initial surface,

3.2. Example Boundary Construction: A Circle

To illustrate, an example boundary is computed for a
circle. Consider a circle of radius 33 parameterized as

XO)=2  »6)=5+sin(d),
2(8) =3+ Jcos(d)

Define the grid to have dimensions 2 x 9 x 8§ centered about
the origin with uniform space step A=1. This is an
exceedingly large space step, but is used here to simplify the
arithmetic. For now, suppose that the interior set 7is in the
positive x direction. This would be the case if the initial
surface is to be like a cylinder, for example, and this circle
is on one end. The relationship between the boundary curve
and the grid are shown in the two views in Fig. 16.

In this example there are 14 chains, four of which are
shown in Fig. 17, By symmetry, it is only necessary in this
example to compute the boundary conditions for the first
four chains.

Chain 1. This chain consists of only one link, an
edge connecting grid points g, ;3 and g, 4. The inter-

FIG. 16. Example of a grid with a boundary curve,
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Chain 3

FIG. 17. Example chains.

section occurs when # =0 which corresponds to the point
18158+ 3&255 Since the set [ is in the direction of positive
x, then the grid point g, 5. should be the one labelled
independent. Using the formula in Eq. (5) with o =1 gives
the equation

D(g1.s58) _‘p(gz,s.a)-

Chain 2. This chain also consists of only one link, a
pane connecting the grid points g, ¢+, €163, £26.9. and
€265 The intersection point occurs at the point (4, 6,
(9+3./5)/2). With respect to the grid, this corresponds
to the point (1 —a—f)g,¢7+08268+ P87, wWhere
2=(3./5—5)/2 and f=1. As in the previous chain, the
independent points should be g, ¢, and g, ¢ 5. Plugging this
into Eq. (5) gives

[@(g1'6_7)] _ [3 J5—6 5-3 \/3}[95(5:2‘6_7)]'

B(g,es)] L3V/5~7 6-3./5| D)

Chain 3. This chain is made up of four connected panes.
Choosing dependencies is similar to the previous one-pane
segment. In this case, the dependent points should be the
grid points g, ;, and the independent points should be
£2.;«- It is easy to see that this chain is then consistent; i.e.,
no grid points are labelied both dependent and independent.
Once the dependencies are established, then the calculation
of the dependency matrices proceeds as in Chain 2 to obtain
the four matrix equations

[@(81,7.1)] A \:@(gm,ﬂ]
‘D(gl,v.s) D(g1.7.5) |
_45(g1,7,7)- (

_¢(g1,8.7)_

[ @(g15.6) |

f —C
_(D{g1.3_7)_ L
[ D(g156) |
| P(g1,0.6} ]

— B

(gz,s,v),,

[ P(g2.5.6)]

—D .
L D(g2.96) ]

Let A have entries a,

[/
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and similarly for B, C, and D. Then

the four matrix equations are combined into the one matrix
equation by averaging to obtain

b(g) 7.5)
P(g17,7)
D(g:57)
D(g1.8.6)
P(g15.6)
e s 0 0 0]
a1z ay +by, 9_1_3 0
2 2 2
by by + €2z €21
1° 7 = 2 °F
c cn+dy, d
0 0 _213 112 il f
L0 0 t! dq, dy;
P(g2.7.8)
D(g27.7)
x| D(g2s7) (6)
P(g2.5.6)
P(g2.5,6)

Chain 4. The process for this single pane chain is
identical to that of Chain 2.

The remainder of the boundary can be constructed easily
by using symmetry, or it can be done the same way as
above,

3.3. Reininitialization and the “‘Tentpole Phenomenon”

Using curvature flow with boundary conditions to
anchor the surface to the boundary contour produces a very
simple first attempt at an algorithm for computing minimal
surfaces.

Unfortunately, the algorithm does not work because of
inaccuracy at the boundary. To resolve the inaccuracy,
some investigation into the theory of curvature flow is
necessary. For mean curvature flow without boundaries
using the level set representation, Evans and Spruck [7]
proved that the level sets of the function ¢ do not change
distance relative to each other as time progresses. When
boundaries are introduced, however, this is not true,
Instead, a structure resembling a tentpole can appear as in
Fig. 18.

Unless the surface § =@ ~!(0) is extended so that all the
level sets near the boundary have zero mean curvature,
the level sets on one side of S will collapse together onto the
boundary, while on the other side they separate and llow
away from the boundary. In the wake of the boundary, as
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FIG. 18, The tentpole phenomenon.

the level sets flow downstream, eventually catastrophic
round-off affects the computation of the curvature near the
boundary and instability ensues,

To avoid the tentpole phenomenon the surfaces are reini-
tialized. At regular time intervals, the surface @~'(0) is
focated and the signed distance from @ ~'(0) to each point
is computed. The formula for reinitialization can be
expressed as

®(x) « sign(D(x}) dist(x, @~ '(0)). (7)
The process of reinitialization effectively moves the nonzero
level sets so that they are equally spaced as they would be
for flow without boundary. The zero level set remains fixed.

Adding reinitialization to Algorithm 1 produces the final
atgorithm for computing minimal surfaces:

ALGORITHM 2.

Step . Move by curvature flow

Step 2. Reattach the surface to the boundary
Step 3. Reintialize @

Step 4. Go to step one.

3.4. Reducing Computing Costs

Considered as separate pieces, the steps for computing
minimal surfaces given above can be computationally
expensive. In the simplest case, one time step in curvature
flow is an O(n®) operation, reattaching the boundary is
O{n), and reinitializing the surface is O(n%). To see that
reinitialization is of order O{n®), note that it is an O(n’)
operation to locate a level set on a grid and an additional
O(n*) operation to compute the distance from a point on

FIG. 19. Two-dimensional stencil diagram.
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FI1G. 20. Convergence of solutions under grid refinement.

the surface to each point on the grid. Even for relatively
small values of #, an O{»°) order computation done every
time step is for all practical purposes too costly.

By combining the three steps and making one observa-
tion, the overall computing cost can be decreased dramati-

L

F1G. 21. Euler’s catenoid surface.
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TABLE 1
Computed Error Table

Grid size L' L? L=
9x 17x 17 8.64E — (2 1.63E —03 237TE-02
17x33x33 6.13E - 02 427 -04 9.33E — 03
26 x 46 x 46 742E =02 3ME-—-04 6.13E—-03

cally. To begin, note that with the introduction of reini-
tialization, the values of @ outside of a neighborhood of
$~Y0) are extraneous and have no effect on the motion of
the set &~ (). The only contribution of points outside the
neighborhood is to hold a sign for the use of locating the
zero level set. This observation leads to the conclusion that
the only points that need to be reinitialized are those inside
of the neighborhood of &~ !(0) that are used in computing
the motion for @ ~*(0).

Let two gridpoints g, ., and g, ;.. be neighbors if
max{ii— 7|, [j—j'l, lk—k'|} € 1. Define the stencil of the
surface to be those points in a neighborhood of & ~}{0).

|
e = 020
#me = 040 e = 041
fime = 042 e = 050

FIG. 22. Splitting catenoid evolution.

o

FIG. 23. Square catenoid surface.

More specifically, a point g is in the interior of the stencil if
it has a neighbor point g’, for which &(g) &(g') < 0. A point
g is in the stencil if it has a neighbor g’ in the interior of the
stencil. In other words, a point g is in the stencil if it is next
to the surface or is one of the 26 grid points surrounding a
point next to the surface. A diagram of the two-dimensional
case 1s shown in Fig. 19.

By restricting reinitialization to the stencil of the surface,
then the computational cost of reinitialization drops from
O(n®) to O(n*). To see this reduction note that if restricted
to the stencil, the distance need only be computed for a fixed
size neighborhood of each point, since only points near the
surface are going to be reinitialized. Thus, the cost of
reinitialization reduces to finding the surface and then
computing for each point near the surface the distance
to a fixed number of points (26) independent of n. Therefore,
the total cost of reinitialization decreases to O(n°).

Furthermore, since the values of @ outside of the stencil
are only sign holders, it is not necessary to move ¢ outside
of the stencil. Thus, during reinitialization, a list of the
points in the stencil is created and passed to the curvature
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FIG. 24. Offset circles surface.

flow step. The curvature flow subroutine computes the cur-
vature motion for all points in the interior of the stencil. This
allows the curvature flow step cost to drop from O(r?) for
computing @, everywhere, to O(#n*) for computing @, only
within the stencil.

One final side benefit is gained by restricting computation
to the stencil. It now no longer matters what type of bound-
ary conditions are used for the boundary of the grid. Since
computation is onl]y done within the stencil, only the inter-
section of the stencil with the grid boundary can influence
the motion of @, However, perturbations introduced by the
grid boundary are stopped entirely by the contour bound-
ary before they can affect the interior portion . Thus, it is
equally acceptable to use one-sided differences at the grid
boundary or simply to assume @, =0 on the grid boundary.

4. NUMERICAL RESULTS

The algorithm presented in the previous chapter was
designed to meet the following goals: it should produce

FIG. 25. Three circles surface.

accurate results with at least linear converge and it should
be able to change topology naturally without special inter-
vention by the user.

From tests against known solutions, the convergence of
the algorithm to the exact solution appears to be nearly
linear. In Fig. 20 a sequence of grid refinements and the
exact solution for the radius of Euler’s catenoid solution
r(x) = a cosh(x/a) on the interval [ — b, 5], with a = 0.4 and
b=0.277259 are shown (see Fig.1). TableI shows the
absolute error in the radius measured in the L', L?, and L™
norms. Figures 22, 26, and 27 show how topological
changes can occur. However, the topology can also be
complex if a solution of that type exists as in Fig. 34.

4.1. Examples of Computed Surfaces

The following pages contain pictures of a number of
minimal surfaces computed by this algorithm as well as
some sample evolutions demonstrating changes of
topology.

In Fig. 21, the computed solution of Euler’s catenoid
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surface is shown. The rings are of radius 0.5 and positioned
at x=10.277259. The radius at the center should be
approximately 0.4. The mesh size is 27 x 47 x 47 with space
step 0.025 in all directions. The initial surface consisted of a
cylinder of radius 0.5.

In Fig. 22 is shown what happens if the initial surface is
chosen to be a cylinder as in Fig. 21, but the rings are too far
apart for a catenoid solution to exist. In this case, the topol-
ogy changes so that, instead of a cylinder type surface, two
disks are found as the sclution. For this surface, the rings
have radius 0.5 and are positioned at x = +0.345, and the
mesh size is 41 x 41 x 41 with space step 0.05.

In Fig. 23, the computed soluticn of a catenoid type of
surface with square ends is shown from different angles.
The squares have side length 1.0 and are positioned at
x= £0.275. The mesh size is 41 x 41 x 41 with space step
0.05. The initial surface was a square tube of side length 1.0.

in Fig. 24, a cylinder type of surface is shown, where the
circles are parallel, but with offset centers. The circles are of
radius 0.5 with the centers located at +(0.2625, 0.0, 0.25)
parallel to the yz-plane. The mesh has dimensions

25 x 45x 67 with space step 0.025 in all directions. The
initial surface was a cylinder with oval cross section and
principle radii § and 2.

In Fig. 25, the boundary consists of three circles with
centers equally spaced on a base circle of radius 7 on the
xy-plane. The circles each have radius . The mesh has
dimensions 41 x41 x41 with space step 0.05. The initial
surface was three half-cylinders joined in the center.

In Fig 26, the boundary consists of three circles with
centers equally spaced on a base circle of radius 0.755 on
the xy-plane. The circles each have radius 0.51. The mesh
has dimensions 41 x 51 x 25 with space step 0.05. The initial
surface was three half-cylinders joined in the center. In this
case the rings are too far apart to have a connected minimal
surface, hence the surface breaks into three disks.

In Fig. 27, the boundary consists of six squares of side
length %, centered on the coordinate axes. On the x-axis the
squares are located at +0.375, on the y-axis at +0.775 and
on the z-axis at + 1.275. The different distances were chosen
to cause the surface to break at three different times. The
mesh has dimensions 25 x 41 x 61 with uniform space step
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FIG. 28. Square Sherck surface.

0.05. The initial surface was the union of three cylinders with
square cross section.

In Fig. 28, the surface computed is known as Sherck’s sur-
face. The boundary consists of eight line segments of unit
length. The mesh has dimensions 42 x 42 x 42 with space
step & in all directions. The intial surface consisted of the
two parallel half-planes {(x, y, z):y= +0.5, z< 0.5} and
the strip {(x,y,2z): —0.5< y<0.5, z=0.5}.

In Fig. 29, the boundary is formed by the edge of a twisted
rectangle. The width of the rectangle is, and the flat ends
have length 0.5. The center twisted portion has length 0.5 as
well. The grid dimensions are 42 x 42 x 42 with space step
Z. The initial surface was the twisted strip, from which the
boundary was derived, extended out to the edge of the grid.

In Fig. 30, the boundary is an oval mapped onto the
surface of a cylinder. The exact equation for the boundary
curve is given by

y(s) = (4 cos(s) + 7, sin(3 sin(s)), Cos‘(% sin(5)}).

The dimensions of the grid are 46 x 46 x 46 with space step
£. The initial surface was a cylinder of radius 3.

FIG. 29. Twisted rectangular strip surface.

In Fig 31, the boundary consists of two parallel
“bowties” located at x= +0.1375, rotated by =/6 with
respect to each other. The bowties consist of two opposite
quarter arcs of radius 1, along with the connecting diameter
lines. The grid size is 25 x 49 x 49 with space step 0.025. This
surface demonstrates the ability of the algorithm to handle
singularities in the boundary contour. Two more examples
of contour singularities follow.

In Fig. 32, the boundary consists of a square of side
length 1 on one end and two squares of diagonal length 3
rotated by =/4 and offset so that the corners touch on the
x-axis, The two ends are located at x = +0.1375. The mesh
dimensions are 25 x 25 x 49 with space step 0.025.

In Fig. 33, the boundary consists of a square of side
length 4 on one end and a “pinwheel” of the same
dimensions. The two ends are parallel centered at x=
+0.1375. The grid dimensions are 25 x 45 x 45 with space
step 0.025.

In Fig. 34, the boundary consists of three parallel squares.
The outer two squares have side length one and the middle
square has side length two. The mesh dimensions are
25 x 47 x 47 with space step 0.025. This surface is very



FIG. 31. Twisted bowtie surface. FIG. 33, Square and pinwheel surface.
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FIG. 34. Square Meeks-Yao surface.

similar to the Meeks—-Yao free minimal surface. Through the
surface there are four holes, two through each of the smaller
end squares. The initial surface had the same topology as
the final shape. This example demonstrates that topologi-
cally complex surfaces are not always changed so long as a
minimal surface of that type exists.

5. CONCLUSIONS

In this paper, a new algorithm for computing minimal
surfaces has been introduced. While the algorithm naturally
computes topological changes in the evolving surface, cer-

SN

FIG, 35. Surface with boundary passing through interior,

o0

FIG. 36. Example of a triple point.

tain desirable properties were sacrificed. At present, the new
algorithm is not capable of studying minimal surfaces which
have the boundary passing through an interior portion of
the surface as in Fig. 35. The obvious reason is because the
artificial values created by the interpolatory boundary
conditions interfere with the natural motion of the surface,
where the boundary passes through.

The algorithm is also not capable of handling triple
points, for example, the catenoid with a disk in the center of
Fig. 4. Because of the level set formulation, it is not possible
to have the sign of & change across each surface (see
Fig. 36). The possibility of extending the algorithm in this
case is under investigation,

Several other extensions to the algorithm are also under
investigation. Some results on computing non-zero con-
stant-mean curvature surfaces and the flow of curves on
manifolds can be found in [2 ]. More generally, it is hoped
that the combination of the level set idea with boundary
conditions will also be capable of solving other highly non-
linear types of partial differential equations with boundary.
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